首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   680篇
  免费   26篇
  国内免费   2篇
测绘学   4篇
大气科学   73篇
地球物理   156篇
地质学   210篇
海洋学   65篇
天文学   87篇
综合类   4篇
自然地理   109篇
  2022年   7篇
  2021年   7篇
  2020年   11篇
  2019年   16篇
  2018年   10篇
  2017年   12篇
  2016年   22篇
  2015年   23篇
  2014年   20篇
  2013年   40篇
  2012年   31篇
  2011年   30篇
  2010年   26篇
  2009年   38篇
  2008年   23篇
  2007年   33篇
  2006年   21篇
  2005年   29篇
  2004年   20篇
  2003年   26篇
  2002年   26篇
  2001年   25篇
  2000年   18篇
  1999年   15篇
  1998年   20篇
  1997年   8篇
  1996年   5篇
  1995年   6篇
  1994年   7篇
  1993年   4篇
  1992年   10篇
  1991年   6篇
  1990年   4篇
  1989年   7篇
  1988年   3篇
  1987年   8篇
  1986年   9篇
  1985年   5篇
  1984年   12篇
  1983年   8篇
  1982年   9篇
  1981年   8篇
  1980年   6篇
  1979年   10篇
  1978年   2篇
  1977年   3篇
  1976年   5篇
  1973年   8篇
  1970年   1篇
  1969年   1篇
排序方式: 共有708条查询结果,搜索用时 15 毫秒
61.
An 18 million year record of the Ca isotopic composition (δ44/42Ca) of planktonic foraminiferans from ODP site 925, in the Atlantic, on the Ceara Rise, provides the opportunity for critical analysis of Ca isotope-based reconstructions of the Ca cycle. δ44/42Ca in this record averages +0.37 ± 0.05 (1σ SD) and ranges from +0.21‰ to +0.52‰. The record is a good match to previously published Neogene Ca isotope records based on foraminiferans, but is not similar to the record based on bulk carbonates, which has values that are as much as 0.25‰ lower. Bulk carbonate and planktonic foraminiferans from core tops differ slightly in their δ44/42Ca (i.e., by 0.06 ± 0.06‰ (n = 5)), while the difference between bulk carbonate and foraminiferan values further back in time is markedly larger, leaving open the question of the cause of the difference. Modeling the global Ca cycle from downcore variations in δ44/42Ca by assuming fixed values for the isotopic composition of weathering inputs (δ44/42Caw) and for isotope fractionation associated with the production of carbonate sediments (Δsed) results in unrealistically large variations in the total mass of Ca2+ in the oceans over the Neogene. Alternatively, variations of ±0.05‰ in the Ca isotope composition of weathering inputs or in the extent of fractionation of Ca isotopes during calcareous sediment formation could entirely account for variations in the Ca isotopic composition of marine carbonates. Ca isotope fractionation during continental weathering, such as has been recently observed, could easily result in variations in δ44/42Caw of a few tenths of permil. Likewise a difference in the fractionation factors associated with aragonite versus calcite formation could drive shifts in Δsed of tenths of permil with shifts in the relative output of calcite and aragonite from the ocean. Until better constraints on variations in δ44/42Caw and Δsed have been established, modeling the Ca2+ content of seawater from Ca isotope curves should be approached cautiously.  相似文献   
62.
A backscattered and secondary electron SEM study of the grain boundary microstructure in quartz mylonites sampled along the length of the retrograde Simplon Fault Zone established three characteristic components. (1) Fine isolated pores (≤?1?μm diameter) are scattered across two-grain interfaces, preferentially concentrated on surfaces in extension. Pores are uncommon on three-grain junctions and there is no evidence for fluid interconnectivity along three- and four-grain junctions. The fine porosity may develop by accumulation of original, mainly intragranular fluid inclusions to the grain boundary during deformation and recrystallization and by cavitation of grain boundaries during grain boundary sliding. Dynamic cavitation implies that the “ductile” mylonitic deformation is at least locally dilatant and therefore pressure sensitive. (2) Large “vug”-like pores (up to mm-scale) extend along multi-grain boundaries. Observed in all samples, they are most common in the higher initial temperature, coarse-grained samples with a microstructure dominated by grain boundary migration recrystallization. Grains bordering this connected porosity develop perfect crystal faces, undecorated by fine pores or pits. The irregular “lobate” optical microstructure of many migrating grain boundaries actually consists of a series of straight crystal faces. The coarse porosity is probably due to accumulation during dynamic recrystallization of (CO2-rich ?) fluid with a high wetting angle against quartz. (3) In one sample, interconnected sinuous ridges, ≤?0.2?μm high, are observed to follow three- and four-grain junctions and disjoint into more isolated worms and spheroidal globules. On two-grain interfaces, these are transitional to more branching vein-like or convoluted brain-like forms. The brain-like and globular forms have been observed, with varying frequency, through the range of samples, with the globules attaining sizes of up to 60?μm. Vein structures have also been observed on intragranular fractures. These topologies do not match across adjoining surfaces and must have developed into free space. The ridge-vein-brain-spheroid structure is distinctly different to that previously observed on experimentally healed microcracks and its origin is not unequivocally established. They could represent unstable meniscus necking of a thin grain-boundary phase of low viscosity, developed due to quasi-adiabatic shear and/or local stress-induced dilatancy during microcracking.  相似文献   
63.
A comparison of estimated and calculated effective porosity   总被引:1,自引:1,他引:0  
 Effective porosity in solute-transport analyses is usually estimated rather than calculated from tracer tests in the field or laboratory. Calculated values of effective porosity in the laboratory on three different textured samples were compared to estimates derived from particle-size distributions and soil–water characteristic curves. The agreement was poor and it seems that no clear relationships exist between effective porosity calculated from laboratory tracer tests and effective porosity estimated from particle-size distributions and soil–water characteristic curves. A field tracer test in a sand-and-gravel aquifer produced a calculated effective porosity of approximately 0.17. By comparison, estimates of effective porosity from textural data, moisture retention, and published values were approximately 50–90% greater than the field calibrated value. Thus, estimation of effective porosity for chemical transport is highly dependent on the chosen transport model and is best obtained by laboratory or field tracer tests. Received, March 1997 · Revised, August 1997 · Accepted, August 1997  相似文献   
64.
We present the luminosity function and measurements of the scalelengths, colours and radial distribution of dwarf galaxies in the Coma cluster down to R =24. Our survey area is 674 arcmin2; this is the deepest and most detailed survey covering such a large area.
Our measurements agree with those of most previous authors at bright and intermediate magnitudes. The new results are as follows.
(1) Galaxies in the Coma cluster have a luminosity function φ( L )∝ L α that is steep (α∼−1.7) for −15< MR <−11, and is shallower brighter than this. The curvature in the luminosity function at MR ∼−15 is statistically significant.
(2) The galaxies that contribute most strongly to the luminosity function at −14< MR <−12 have colours and scalelengths that are consistent with those of local dwarf spheroidal galaxies placed at the distance of Coma.
(3) These galaxies with −14< MR <−12 have a colour distribution that is very strongly peaked at B − R =1.3. This is suggestive of a substantial degree of homogeneity in their star formation histories and metallicities.
(4) These galaxies with −14< MR <−12 also appear to be more confined to the cluster core ( r ∼200 kpc) than the brighter galaxies. Alternatively, this observation may be explained in part or whole by the presence of an anomalously high number of background galaxies behind the cluster core. Velocity measurements of these galaxies would distinguish between these two possibilities.  相似文献   
65.
We present the results from a CCD survey of the B -band luminosity function of nine clusters of galaxies, and compare them to published photographic luminosity functions of nearby poor clusters like Virgo and Fornax, and also to the field luminosity function. We derive a composite luminosity function by taking the weighted mean of all the individual cluster luminosity functions; this composite luminosity function is steep at bright and faint magnitudes and is shallow in-between.
All clusters have luminosity functions consistent with this single composite function. This is true both for rich clusters like Coma and for poor clusters like Virgo.
This same composite function is also individually consistent with the deep field luminosity functions found by Cowie et al. and Ellis et al., and also with the faint end of the Las Campanas Redshift Survey R -band luminosity function, shifted by 1.5 mag. A comparison with the Loveday et al. field luminosity function, which is well determined at the bright end, shows that the composite function, which fits the field data well fainter than M B=−19, drops too steeply between M B=−19 and −22 to fit the field data there.  相似文献   
66.
We present the K -band (2.2 μm) luminosity functions (LFs) of the X-ray-luminous clusters MS1054–0321 ( z  = 0.823), MS0451–0305 ( z  = 0.55), Abell 963 ( z  = 0.206), Abell 665 ( z  = 0.182) and Abell 1795 ( z  = 0.063) down to absolute magnitudes M K  = −20. Our measurements probe fainter absolute magnitudes than do any previous studies of the near-infrared LFs of clusters. All the clusters are found to have similar LFs within the errors, when the galaxy populations are evolved to redshift z  = 0. It is known that the most massive bound systems in the Universe at all redshifts are X-ray-luminous clusters. Therefore, assuming that the clusters in our sample correspond to a single population seen at different redshifts, the results here imply that not only had the stars in present-day ellipticals in rich clusters formed by z  = 0.8, but that they existed in as luminous galaxies then as they do today.   Additionally, the clusters have K -band LFs which appear to be consistent with the K -band field LF in the range −24 <  M K  < −22, although the uncertainties in both the field and cluster samples are large.  相似文献   
67.
The fractionation of 13C between calcite and graphite, Δ(Cc-Gr). is consistently small (2.6–4.8 permil) in 34 assemblages from upper amphibolite- and granulite-facies marbles of the Grenville Province. In 25 samples from the Adirondack Mountains, New York, it decreases regularly with increasing metamorphic temperature. The fractionations are independent of absolute δ13C values of calcite (?2.9 to +5.0). For T = 600–800°C, the Adirondack data are described by Δ(Cc-Gr) = ?0.00748TC) + 8.68. This good correlation between Δ and T suggests that carbon isotope equilibrium was attained in these high-grade marbles and that the theoretical calculations of this fractionation by Bottinga are approximately 2 permil too large in this temperature range. Because of the relatively high temperature sensitivity suggested by these results and by Bottinga's calculations, and the pressure independence of isotope fractionation, Δ(Cc-Gr) may provide a very good thermometer for high-grade marbles.Comparison of this field calibration for Δ(Cc-Gr) vs temperature with results from other terranes supports the utility of Δ(Cc-Gr) for geothermometry and suggests that graphite is much more sluggish to exchange than calcite, that exchange between calcite and graphite occurs at temperatures as low as 300°C, and that equilibrium may normally be attained only when peak metamorphic temperatures are greater than 500–600°C.Because 13C exchange is an unavoidable metamorphic process at temperatures above 300°C, high values of δ13C(Gr) in moderate- to high-grade carbonate-bearing rocks do not provide a sufficient criterion to infer an abiogenic origin for the graphite.  相似文献   
68.
Phase compositions in pelitic and mafic gneisses place tight constraints on pressure (ranging from 3 up to 6 kb), and, to a lesser extent, on temperature (500° up to 800° C) during prograde regional metamorphism of the Willyama Complex, Broken Hill, SE Australia. These limits allow an evaluation of water activity across the terrain using various equilibria in pelitic and mafic gneisses. The stability of cummingtonite and biotite over much of the terrain places upper limits on temperature, and the presence of syn-metamorphic partial melts in the metasediments places lower limits on a(H2O). Garnet-biotitesillimanite-K feldspar-quartz relations combined with the partial melting data suggest a decrease in water activity from near 1.0 in the lower grade zones to 0.5±0.2 in the Broken Hill — Little Broken Hill part of the two pyroxene zone. This result is compatible with less precise hornblende-orthopyroxene-clinopyroxene-quartz relations.These P-T-a(H2O) data from the Willyama Complex support a continuum from amphibolite to granulite facies, as proposed by Binns (1964) and suggest that the higher grade assemblages are formed in response to both higher temperature and lower water activity. The formation of granulite facies terrains by prior crustal dehydration is unsubstantiated in the present example. Instead, the decrease from a(H2O)-1.0 in the andalusite/sillimanite-muscovite zones to a(H2O) < 1.0 found at higher grades, is likely to reflect buffering by partial melting and dehydration reactions in the volumetrically dominant metasediments.  相似文献   
69.
Mineralogical, chemical, textural, and isotopic studies of the abundant carbonaceous inclusions in the Jodzie howardite are consistent with CM characteristics. These CM xenoliths show regolith alteration on a level comparable to the Murray and Murchison meteorites but less than Nogoya, flow-oriented development of phyllosilicates and ‘poorly characterized phases’, and partial oxidation of sulfides. Temperature-programmed pyrolysis mass spectrometry (25°–1400°C) indicates that gas release patterns of volatiles and hydrocarbon components and percent contents of N(0.15), C(2.3) and S(2.4) are typical of CM meteorites. Release of significant amounts of SO2 is attributed to the thermal breakdown of ‘poorly characterized phases’ (Fe-Ni-C-S-O) that formed during low temperature aqueous alteration in the CM parent body.Noble gas abundances are well within the reported range of CM meteorites. The fact that the Ne composition is typical for ‘solar’ values and the isotopic structure of Xe is ‘planetary’ argues that these gases were entrapped by different mechanisms. Cosmic ray exposure ages for the xenoliths (3He, 5 × 106; 21Ne, 6.7 × 106; 38Ar, 6.9 × 106 yr) agree with the reported exposure age for the eucritic host. Volatile abundances, presence of intact organic molecules, and phyllosilicates in the CM xenoliths preclude regolith temperatures in excess of 200°C after CM incorporation. Mixing of the host and xenoliths probably occurred during a low-velocity collision of main belt asteroids.  相似文献   
70.
Regional metamorphic zones, based on mineral assemblages in pelites, are presented for the Dalradian rocks of Aberdeenshire and Banffshire, in the type area of Buchan metamorphism; electron microprobe analyses of cordierite (C), staurolite (S), chlorite (Chl), biotite (B) and white mica (Ms) are reported for rocks from the classic sections of the Banffshire coast and the valley of the Ythan.A low grade biotite zone, separates two NE-SW trending sets of higher grade zones, in which the sequence s defined by the entry of cordierite, andalusite (A) and (in the west only) staurolite. The zones are characterised by the assemblages (with quartz and muscovite) B-Chl, C-B-Chl, A-C-B and S-A-B.The western sequence contains a transition towards higher pressure, Barrovian type, metamorphism. The isograds arise from continuous reactions affecting rocks of restricted bulk composition (M/FM). With increasing grade, there is a regular trend towards more magnesian ranges of composition for the assemblages C-B-Chl, A-C-B and finally (as P increases in the west), S-A-B. The isograds form when these assemblages intersect the most Fe++-rich rock compositions present which occurs in each case when the biotite M/FM=40. A complex of divariant equilibria, derived for the system KFMASH, is used to model the natural reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号